Stress Analysis of Free-Standing Silicon Oxide Films Using Optical Interference
نویسندگان
چکیده
We report a method for stress measurement and analysis in silicon oxide thin films using optical interference. Effects of design and fabrication on stress have been studied by fabricating submicron-thick slabs of oxide anchored at one end and extending over a reflective surface. Optical interference occurs between reflections from the surface and the oxide slab, giving rise to light and dark fringes that may be imaged with a microscope. Analysis of the interference pattern at different wavelengths gives the radius of curvature and means of stress mapping. The accuracy exceeds non-interferometric profilometry using optical or confocal microscopes, and it can be more quantitative than scanning electron microscopy. This nondestructive profilometry method can aid the stress optimization of silicon oxide or other transparent thin films to achieve specific mechanical characteristics in MEMS devices.
منابع مشابه
Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films
Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...
متن کاملStructural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films
Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...
متن کاملStress control of plasma enhanced chemical vapor deposited silicon oxide film from tetraethoxysilane
Thin silicon dioxide films have been studied as a function of deposition parameters and annealing temperatures. Films were deposited by tetraethoxysilane (TEOS) dual-frequency plasma enhanced chemical vapor deposition with different time interval fractions of high-frequency and low-frequency plasma depositions. The samples were subsequently annealed up to 930 ◦C to investigate their stress beha...
متن کاملA Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates
The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...
متن کاملChiral nematic mesoporous films of ZrO₂:Eu³⁺: new luminescent materials.
Integration of luminescent rare earth ions and iridescence into a zirconium oxide photonic material is attractive for the design of new optical devices. The free-standing chiral nematic mesoporous films of ZrO2:Eu(3+) are assembled by a hard-templating approach using nanocrystalline cellulose-templated silica. The ZrO2:Eu(3+) films show tunable optical properties. The chiral nematic structured ...
متن کامل